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Piercing Unit Geodesic Disks∗

Ahmad Biniaz† Prosenjit Bose‡ Thomas Shermer§

Abstract

We prove that at most 3 points are always sufficient
to pierce a set of m pairwise-intersecting unit geodesic
disks inside a simple polygon P with n vertices of which
nr are reflex. We provide an O(n+m log nr) time algo-
rithm to compute these at most 3 piercing points. Our
bound is tight since it is known that in certain cases 3
points are necessary.

1 Introduction

The study of problems related to piercing a collection of
convex sets has a rich history in Computational Geom-
etry [10]. One of the most famous results in this area
is Helly’s theorem [15, 16] which states the following:
Given n convex sets in ℜd, with n > d, if every d + 1
convex sets have a nonempty intersection, then all n sets
have a nonempty intersection. In other words, if a point
pierces every d+ 1 sets, then a point pierces all n sets.
For Helly’s theorem to hold, it is critical that every d+1
sets have a point in common. Helly’s theorem no longer
holds if only d sets have a point in common. For exam-
ple, given n lines in the plane, i.e. d = 2, where every
pair of lines intersects but no three have a point in com-
mon, then Ω(n) points are required to pierce every line.
On the other hand, given a set of n pairwise-intersecting
disks in the plane, Danzer and Stachó independently
showed that 4 points pierce all the disks [9, 22, 23].
Grünbaum [11] showed that 4 points are sometimes nec-
essary thereby proving optimality. Neither the proof by
Danzer nor the proof by Stachó lends itself to an ef-
ficient algorithm to actually compute these 4 points.
From a computational perspective, Har-Peled et al. [14]
presented a linear time algorithm to compute 5 points
that pierce a set of pairwise-intersecting disks. Biniaz et
al. [6] presented a simple linear time algorithm to find
5 piercing points using elementary geometric observa-
tions. Carmi et al. [8] presented a fairly involved linear
time algorithm to compute 4 piercing points. In the case
of a set of pairwise-intersecting unit disks, Hadwiger
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and Debrunner [13] showed that 3 points are sufficient
to pierce the set. Biniaz et al. [6] showed that 3 points
are sometimes necessary and presented a simple linear
time algorithm to compute the piercing points. It is the
fact that disks are fat, as opposed to lines which are
thin, that allows a constant number of points to pierce
pairwise-intersecting disks. This relationship between
the number of points needed to pierce a family of planar
pairwise-intersecting convex sets and the fatness of these
sets has been explored in the literature [2, 5, 18, 20].
The most recent result we know of is by Bazarghani et
al. [5] who show that O(α) points can pierce a set of
pairwise-intersecting α-fat convex sets. Although there
are several definitions of fatness in the literature, the
definition that is used in [5] is the following: a convex
set C is deemed α-fat if the ratio of the radius of the
smallest disk that contains C and the largest disk that
is contained in C is at most α.

In this paper, we focus on piercing problems in the
geodesic setting. Specifically, we explore the following
question: given a set of pairwise-intersecting geodesic
disks inside a simple polygon, can a constant number
of points pierce every disk? Given a simple polygon P ,
a geodesic disk centered on a point x ∈ P is the set
of points y ∈ P such that the length of the shortest
path from x to y in P is at most a constant r, the
radius. This setting is more general than the setting
in the Euclidean plane. In this setting, Bose et al. [7]
showed that 14 points suffice to pierce a set of pairwise-
intersecting geodesic disks inside a simple polygon and
gave anO(n+m log nr) time algorithm to compute these
at most 14 piercing points where n is the number of
vertices of P , nr is the number of reflex vertices andm is
the number of geodesic disks. Subsequently, Abu-Affash
et al. [1] showed that 5 points suffice in this setting and
provide anO((n+m) log nr) time algorithm to find these
5 piercing points. This upper bound may not be tight,
since the best known lower bound on the number of
points required to pierce a set of pairwise-intersecting
geodesic disks is 4. Our main result is the following: we
show that 3 points are always sufficient to pierce a set of
pairwise-intersecting unit geodesic disks inside a simple
polygon and provide an O(n+m log nr) time algorithm
to compute these 3 piercing points. Our bound is tight
since the lower bound of 3 points in the plane also holds
in the more general geodesic setting.
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2 Notation and Preliminaries

Before presenting our main results, we first introduce
some notation and preliminary lemmas. Let P =
v0, . . . , vn−1 be a simple n-vertex polygon. We use the
convention that the interior of P lies to the right of the
edge directed from vi to vi+1, i.e. the polygon is de-
scribed in a clockwise fashion. In what follows, index
manipulation is modulo the size of the set. In the case
of the polygon, it is modulo n.
A segment between two points a, b is denoted as ab

and its length is denoted as |ab|. Given two points x, y ∈
P , the geodesic (or shortest) path from x to y in P is
denoted Π(x, y). The length of this path, referred to as
the geodesic distance, is the sum of the lengths of its
edges and is denoted by |Π(x, y)|. The geodesic metric
refers to P together with the geodesic distance function.
A subset S of P is geodesically convex if, for all pairs of
points x, y ∈ S, the geodesic path in P between x and
y (i.e. Π(x, y)) is in S. Pollack et al. [21] proved the
following lemma about distances between a point and a
geodesic path.

Lemma 1 [21] Let a, b, c be 3 distinct points in P . De-
fine the function g : Π(b, c) → ℜ, as g(x) = |Π(a, x)|.
Then g is a convex function with its maximum occurring
either at b or c.

Informally, a polygon P is weakly simple provided
that a slight perturbation of the points on the boundary
results in a simple polygon. See Akitaya et al. [4] for
a formal definition of weakly-simple polygons as well
as an algorithm to quickly recognize such polygons.
A pseudo-triangle is a simple polygon with 3 convex
vertices (the shaded region in Figure 1 is a pseudo-
triangle). A geodesic triangle on points a, b, c ∈ P ,
denoted △(a, b, c), is a weakly-simple polygon whose
boundary consists of Π(a, b),Π(b, c) and Π(c, a). In Fig-
ure 1, △(c0, c1, c2) consists of the red paths and the
shaded region. A geodesic hexagon is defined in a similar
fashion but on six points in P . Let X = {x0, x1, . . . , xk}
be a set of at least 3 points in P . The set X is geodesi-
cally collinear if ∃xi, xj ∈ X such that X ⊂ Π(xi, xj).
Given points a, b, and c in P that are not geodesically
collinear, the shortest paths Π(a, b) and Π(a, c) follow
a common path from a until they diverge at a point a′

(note that a′ could be a). Similarly, let b′ be the point
where Π(b, a) and Π(b, c) diverge, and c′ be the point
where Π(c, a) and Π(c, b) diverge. The geodesic triangle
△(a′, b′, c′) is simple (not weakly simple), has a′, b′, and
c′ as its convex vertices, and is a pseudo-triangle. We
refer to △(a′, b′, c′) as the geodesic core of △(a, b, c) and
denote it as ▽(a, b, c); the shaded region in Figure 1 is
the geodesic core of △(c0, c1, c2). These properties were
also observed in Pollack et al. [21].

This leads to a natural generalization of the notions of
orientation, angles, and sidedness for geodesics. Given

two distinct points a, b ∈ P , the orientation of a point
a with respect to b in P is the counter-clockwise an-
gle that the first edge of Π(a, b) makes with the posi-
tive x-axis. Orientations are between 0 (inclusive) and
2π (exclusive). Given 3 points a, b, c ∈ P that are not
geodesically collinear, we denote by ∠abc the convex an-
gle at b′ in the geodesic core ▽(a, b, c). When a, b, c are
geodesically collinear then ∠abc is π if b ∈ Π(a, c), and
0 otherwise. We say that b is to the left of Π(a, c) if the
convex vertices in ▽(a, b, c) appear in the order a′, b′, c′

when traversing the boundary in clockwise order start-
ing at a′; otherwise, b is to the right. When referring to
points of P to the left or right of an edge ab of P , we
consider ab to be Π(a, b).
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p1p2

D∗

c0

c1

c2

c′0

c′1

c′2

Figure 1: Basic definitions.

A geodesic disk centered at c ∈ P with radius r ≥ 0
is the set {y ∈ P : |Π(c, y)| ≤ r}. A geodesic disk is
geodesically convex and its boundary may be composed
of several arcs of different curvature [21]. Two geodesic
disks are tangent when the geodesic distance between
the centers of the disks is exactly the sum of the radii.
A unit geodesic disk is a geodesic disk with radius 1.

3 Upper bound on number of piercing points

In this section, we prove that 3 points suffice to
pierce any set of pairwise-intersecting geodesic unit
disks. Throughout this paper, we will be working
with a collection D = {D0, D1, . . . , Dm−1} of pairwise-
intersecting unit geodesic disks whose respective centers
c0, c1, . . . cm−1 are in P . We define D∗ as the smallest
geodesic disk that intersects each member of D, with c∗

and r∗ being the center and radius of D∗, respectively.
The set D is called Helly if there is one point that pierces
all the disks. Every disk in D, by definition, intersects
D∗. We use D∗ to compute the 3 points that suffice to
pierce D, when D is not Helly. The following lemma
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about properties of D∗ when D is not Helly, proven in
[7], will be useful in the sequel.

D0

D2
D1

p0

p2

p1

c∗

D∗

Figure 2: Close-up of p0, p1, p2.

Lemma 2 [7] If D is not Helly, then the disk D∗ has
the following properties:

1. the radius r∗ > 0, where r∗ is the radius of D∗,

2. D∗ is tangent to at least 3 geodesic disks D0, D1, D2

in D at 3 distinct points t0, t1 and t2, respectively,

3. D∗ does not intersect the boundary of the geodesic
core ▽(c0, c1, c2), where ci is the center of disk Di,
for i ∈ {0, 1, 2},

4. The boundary of D∗ is a circle,

5. c∗ is contained in the interior of △(t0, t1, t2).

The properties of D∗ that are important to note are
the following. First, even though D∗ is a geodesic disk
in P , its boundary is actually a circle that does not
intersect the boundary of P ; see Figure 1. Second, the
fact that D consists of pairwise-intersecting unit disks
implies that D∗ must be tangent to 3 disks in D as
opposed to 2, which can be the case when the disks are
not pairwise-intersecting. In the remainder of the paper,
we use the notation in Lemma 2 to refer to the three
disks tangent to D∗, their tangency points, and centers.
We begin by giving an upper bound on the radius r∗ of
D∗.

Lemma 3 The radius r∗ of D∗ is at most (2/
√
3)− 1.

Proof. If D is Helly, then r∗ = 0, thus, we only
need to consider the case when D is not Helly. Since∑2

i=0 ∠cic
∗ci+1 = 2π, we can assume without loss of

generality that ∠c1c∗c2 ≥ 2π/3. Denote by ray(a, b)
the half-line with initial point a containing b. Let c∗b1
be the first edge of Π(c∗, c1), as in Figure 4. Define
b′1 as the first point along ray(c∗, b1) where it intersects
with Π(c1, c2). This intersection must exist by the Jor-
dan Curve Theorem [24] since c∗ is inside ▽(c0c1c2).
Note that it may be the case that b′1 is b1. Let c′1 be

the point on ray(c∗, b′1) such that |c∗c′1| = |Π(c∗, c1)|.
Define b′2 and c′2 analogously. The segment c∗c′1 can
be viewed as an unfolding of Π(c∗, c1) onto ray(c∗, b′1).
Thus, since D∗ and D1 are tangent, we have that
|Π(c∗, c1)| = |c∗c′1| = |c∗b′1| + |b′1c′1| = 1 + r∗. Sim-
ilarly, |Π(c∗, c2)| = |c∗b′2| + |b′2c′2| = 1 + r∗. Since
∠c′1c

∗c′2 ≥ 2π/3, by the cosine law, we have that
|c′1c′2| ≥

√
3(1 + r∗).

By the triangle inequality of the geodesic metric,
|Π(c∗, c1)| ≤ |c∗b′1| + |Π(b′1, c1)|. Since |Π(c∗, c1)| =
|c∗b′1|+ |b′1c′1|, we have that |b′1c′1| ≤ |Π(b′1, c1)|. By the
same argument, |b′2c′2| ≤ |Π(b′2, c2)|. Therefore, we have
that |Π(c1, c2)| = |Π(c1, b

′
1)|+ |Π(b′1, b

′
2)|+ |Π(b′2, c2)| ≥

|c′1b′1|+ |Π(b′1, b
′
2)|+ |b′2c′2| ≥ |c′1c′2|.

Since D1 and D2 have unit radius and intersect, we
have that 2 ≥ |Π(c1, c2)| ≥ |c′1c′2| ≥

√
3(1 + r∗). We

conclude that r∗ ≤ (2/
√
3)− 1.

□

c∗

c1

c2
c′1

c′2

b2
b′2

b1

b′1

t1t2

Figure 4: Illustration of the proof of Lemma 3.

For i ∈ {0, 1, 2}, let pi be the point of Di ∩ Di−1

closest to c∗ (Figure 2). These points must exist because
the disks in D are pairwise-intersecting. Moreover, in
our main theorem, we will prove that these three points
pierce the set D.

Lemma 4 The points p0, p1 and p2 are in the geodesic
core ▽(c0, c1, c2).

Proof. We show that p2 ∈ ▽(c0, c1, c2). The same ar-
gument shows that both p1 and p0 are in ▽(c0, c1, c2).
Consider △(b′1, b

′
2, c

∗) where b′1 and b′2 are defined as in
the proof of Lemma 3 and illustrated in Figure 4. Recall
that |Π(c∗, c1)| = 1 + r∗ since D1 is tangent to D∗. By
construction, we have that |Π(c∗, c1)| = |c∗b′1| + |b′1c′1|.
Since |c∗b′1| > r∗, we have that |b′1c′1| = |Π(c1, b′1)| < 1.
Note that by construction of b′1, we have that Π(c1, c2) =
Π(c1, b

′
1)+Π(b′1, c2). Given that |Π(c1, b

′
1)| < 1, we have

that the boundary of D1 intersects Π(c1, c2) at a point
x on Π(b′1, c2). Similarly, the boundary of D2 intersects
Π(c1, c2) at a point y on Π(b′2, c1).
By construction, we have that c∗ is a convex vertex

of the geodesic triangle △(b′1, b
′
2, c

∗). Since D1 and D2
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Figure 3: Points, arcs, and angles.

intersect, we have that |Π(c1, c2)| ≤ 2. If |Π(c1, c2)| = 2,
in other words, the point x and y coincide, then p2 is
on Π(c1, c2) and therefore p2 ∈ ▽(c0, c1, c2). Otherwise,
we consider the case when |Π(c1, c2)| < 2. In this case,
notice that as we traverse Π(c1, c2) from c1 to c2, we
must encounter y before x.

Consider the arc B1 to be the portion of the boundary
of D1 from t1, the point of tangency between D1 and
D∗, to x. Since this arc at t1 enters △(b′1, b

′
2, c

∗), by the
Jordan curve theorem [24], it intersects either Π(b′1, b

′
2)

or the segment c∗b′2. Let us consider the latter case first.
Assume that B1 intersects c∗b′2 at a point z. Let B′

1

be the portion of B1 from t1 to z. Consider the closed
region R consisting of the segment zc∗, the segment c∗t1
and B′

1. We now define the arc B2 to be the portion of
the boundary ofD2 from t2 to y. At t2, the arc B2 enters
the region R. Since y is outside of R, by the Jordan
curve theorem, B2 must intersect the boundary of R.
This intersection point, which is p2, must be on B′

1 since
B2 cannot intersect c∗t1 as every point on that segment
is farther than 1 from c2. Thus, p2 is in △(b′1, b

′
2, c

∗)
since B′

1 is.
For the case where B1 intersects Π(b′1, b

′
2), we use the

same argument except that the boundary of the region
R consists of B1, Π(x, b

′
2), b

′
2c

∗ and c∗t1. Since we en-
counter y before x when we traverse Π(c1, c2) from c1 to
c2, the point y is outside R. Thus B2 must intersect the
boundary of R, and similar to previous case this inter-
section which is p2 must be through B1 in the triangle
△(b′1, b

′
2, c

∗). Therefore, we have that p2 ∈ ▽(c0, c1, c2).
□

By the proof of Lemma 4, p2 lies in△(b′1, b
′
2, c

∗) which
is essentially a star shaped polygon with center c∗. Thus
the segment c∗p2 lies in △(b′1, b

′
2, c

∗) which is a subset
of ▽(c0, c1, c2). Applying a similar argument to p0 and
p1 we have the following corollaries.

Corollary 5 The line segment c∗pi is in ▽(c0, c1, c2).

Recall c′0, c′1, and c′2 as the convex vertices of the
geodesic core ▽(c0, c1, c2).

Corollary 6 The geodesic hexagon c′0p1c
′
1p2c

′
2p0 is a

subset of the geodesic triangle △c0c1c2.

Refer to Figure 3(a) for the following. For i ∈
{0, 1, 2}, let Ai be the arc on the boundary of Di from
pi to pi+1. Let θi be the clockwise angle from Ai−1 to
Ai at pi. If θi = 0 then the disks Di−1 and Di are tan-
gent at pi. If θi > 0 then Di−1 and Di have a positive
area of overlap, starting at pi. The case when θi < 0
cannot happen since pi is the intersection point closest
to c∗. Note this in Figure 3(b) where p0 should be at
the other intersection of arcs A0 and A2.

For i ∈ {0, 1, 2}, let αi be the angle from Ai to the
line segment pipi+1 at pi, and βi be the angle from Ai

to the line segment pipi+1 at pi+1; see Figure 3(a).

Lemma 7 For i ∈ {0, 1, 2}, |pipi+1| ≤ 1.

Proof. Consider a parameter s that denotes the dis-
tance we have moved as we move from pi to pi+1 along
Ai. The coordinates of a point x ∈ Ai as well as the tan-
gent t to Ai at point x can be expressed as a function of
this parameter s. See Figure 5, where the tangents are
shown as red arrows. Let ∆t denote the change in angle
of this tangent from pi to pi+1. Then ∆t = αi+βi. This
can be seen in the figure, letting q be the point where
the tangent is parallel to the segment pipi+1. Then the
tangent sweeps out αi as it moves from pi to q, and then
sweeps out βi as it moves from q to pi.

Ai

pi+1pi+1

pi

q

αi βi

βi

Figure 5: Tangents to Ai.

Let κ(s) denote the curvature of Ai with respect to
parameter s. Then, by definition of the integral of cur-
vature taken along Ai, we have that ∆t =

∫
Ai

κ(s)ds.
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Since Di is a unit geodesic disk, it has curvature at least
1 on all of its boundary arcs. This is because every
boundary arc of Di comes from a circle whose radius is
at most 1. Since κ(s) ≥ 1, we have ∆t ≥

∫
Ai

1ds. But
the latter integral is simply the length of the arc Ai.
Since αi + βi = ∆t, we have that αi + βi ≥ |Ai|.

Because of the lower bound of 1 on the curvature,
the length of Ai will be at least as large as the length
of a (uniformly) curvature-1 curve from pi to pi+1 This
uniform curve is a circular arc A′

i of radius 1 with some
center which we denote as c′i; see Figure 6. Denote by
C ′

i the unit circle centered at c′i. We have A′
i ⊂ C ′

i.

AiAi

A′
i

α′
i β′

i

pi+1pi

Figure 6: A curvature-1 curve A′
i.

Claim 1 For i ∈ {0, 1, 2}, |pipi+1| is maximized when
C ′

0, C
′
1, and C ′

2 are pairwise tangent.

Proof. By definition, C ′
i and C ′

i+1 have a non-empty
intersection. Define L′

i as the line through c′i and c′i+1.
For sake of a contradiction, we first consider the case
where none of the disks are tangent to each other but
|pipi+1| is maximized. Move c′0 in the direction perpen-
dicular to L′

1 away from L′
1 until C ′

0 becomes tangent
to either C ′

1 or C ′
2. During this process, p2 remains

fixed and p0p2, p1p2, p0p1 increase in length, which is a
contradiction. Now, without loss of generality, assume
that only C ′

0 and C ′
1 are tangent. By moving c′2 in the

direction perpendicular to L′
0 away from L′

0 until C ′
2

becomes tangent to either C ′
0 or C ′

1, once again, p1 re-
mained fixed and p0p1, p1p2, p0p2 increase in length,
which is a contradiction. Finally, without loss of gen-
erality, assume that only C ′

0 and C ′
2 are not tangent.

Rotate C ′
0 around c′1, while keeping it tangent to C ′

1,
until C ′

0 is tangent to C ′
2. Here we note that p2 remains

fixed, and p0p2, p1p2, p0p1 increase in length. There-
fore, we conclude that each |pipi+1| is maximized when
C ′

0, C
′
1, and C ′

2 are pairwise tangent. This finishes our
proof of Claim 1.

By Claim 1, each |pipi+1| is maximized when C ′
0, C

′
1,

and C ′
2 are pairwise tangent, in which case △(p0, p1, p2)

must be an equilateral triangle with side length 1.
□

Corollary 8 For i ∈ {0, 1, 2},

|c∗pi| ≤
√

r∗(2 + r∗) ≤ 0.578.

Proof. Using the same transformation as in the proof
of Claim 1, we can see that for i ∈ {0, 1, 2}, |c∗pi| is
maximized when the circles C ′

i are pairwise tangent and
the points p0, p1, p2 form an equilateral triangle. This
means that c′i, c

∗ and pi form a right triangle with side
lengths 1, 1+ r∗ and |c∗pi|. Pythagoras’ theorem gives
the bound on |c∗pi| and the numerical upper bound we
get from the upper bound on r∗ in Lemma 3. □

Theorem 9 Let D be a collection of pairwise-
intersecting unit geodesic disks inside a simple polygon
P . Then there are three points inside P such that each
disk of D contains at least one of the points.

Proof. Let D+ be the radius-1 + r∗ geodesic disk cen-
tered at c∗, and C+ be the geodesic circle that is the
boundary of D+. The circle C+ contains arcs at dis-
tance 1 + r∗ from c∗ and segments of the boundary of
P at distances less than that. If we extend the line seg-
ment c∗pi in a straight line from pi, we will hit C+ at
some point qi (which could be the same as pi). The ci’s
(the centers of the three disks tangent to D∗) and qi’s
divide the circle C+ into six sections; we concentrate on
the section between c1 and q1; a symmetric argument
applies to the other five sections.

Since both ends of Π(c1, c0) are at geodesic distance
1 + r∗ from c∗, any point on Π(c1, c0) is at distance no
more than 1 + r∗ from c∗ (by Lemma 1). This implies
that the arcs of C+ (which are at distance 1+r∗ from c∗)
do not intersect the interior of the geodesic core of the
geodesic triangle △c0c1c2. Since there is no boundary
of P in the interior of any geodesic core, the segments
of C+ also do not intersect the interior of the geodesic
core of △c0c1c2. Because this is true for all six sections
of C+, C+ does not intersect the interior of the geodesic
core.

Let cT be a point on C+ non-strictly between c1 and
q1. Because cT is not in the interior of the geodesic core
of △c0c1c2, Π(cT , c

∗) intersects Π(c1, c0). This implies
that Π(cT , c

∗) also intersects Π(c1, p1), as the geodesic
hexagon c′0p1c

′
1p2c

′
2p0 (which contains c∗) must be in-

side the geodesic core of △c0c1c2, by Corollary 6. Let u
be the intersection point of Π(cT , c

∗) and Π(c1, p1), and
let tT be the point where Π(cT , c

∗) crosses the boundary
of D∗. See Figure 7.
The distance d(c1, p1) is equal to d(c1, u)+d(u, p1) =

1 since p1 is on the boundary of D1. The distance
d(c1, u) + d(u, tT ) ≥ 1, since D1 is tangent to D∗. So
d(u, tT ) ≥ d(u, p1) and therefore d(cT , u) + d(u, tT ) ≥
d(cT , u) + d(u, p1). The left-hand side of that last in-
equality is simply 1, and the right-hand side is an upper
bound on the distance d(cT , p1), so we get 1 ≥ d(cT , p1),
or that p1 pierces the disk of radius one centered at cT .
Now consider a unit disk D in our collection of disks

D. The center c of D lies inside the radius 1 + r∗ disk
around c∗, and without loss of generality, it lies in a
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c∗

C+

D∗

q1

cT

tT

u

p1

c1

D1

D0

Figure 7: Π(cT , c
∗) intersects Π(c1, p1) at u.

direction between c1 and p1 from c∗. We extend the
last segment of Π(c∗, c) until it reaches the radius 1+r∗

circle at a point cT . The center c lies on Π(cT , c
∗),

the distance d(cT , p1) ≤ 1 as discussed above, and the
distance d(c∗, p1) ≤ 1 (by Corollary 8). Thus d(c, p1) ≤
1 by Lemma 1, and hence p1 pierces D.
Therefore, the three points p0, p1, and p2 pierce the

entire collection D. □

4 Algorithmic Considerations

In this section, we describe an algorithm to compute the
piercing points. The input to the algorithm is D. First,
compute D∗ in O(n+m log nr) time using the algorithm
described in [7]. This is achieved since it was shown in
[7] that computing D∗ is an LP-type problem.
The reason that the run-time has a log nr term as

opposed to a log n term is that given a polygon P , we
first apply a geodesic-preserving simplification of P in
O(n) time to get a polygon P ′ ⊃ P of size O(nr) where
nr is the number of reflex vertices in P , such that the
shortest path from x to y in P is identical to the shortest
path from x to y in P ′ [3]. Then, we preprocess P ′ in
O(nr) time to answer in O(log nr) time the length of the
shortest path from x to y and O(log nr + k) to report
the k edges on the shortest path [12, 17]. With these
tools in hand, Bose et al. [7] apply Matousek et al.’s [19]
general framework for solving LP-type problems to find
D∗ within the stated amount of time.
If r∗ = 0, then c∗ is returned as the point that pierces

D. If r∗ > 0, then in O(n) time, compute ▽(c0c1c2) with
3 queries to the shortest path data structure constructed
above. Now all that remains is to compute p0, p1 and p2.
We show how to compute p0 in O(n) time. The other
two points are computed in a similar manner. Recall
ti as the point of tangency between D∗ and Di. To
compute p0, we need to intersect the arc A0 with the
arc A2. Each arc Ai consists of at most nr pieces of

circular arcs inside ▽(c0c1c2). Essentially, to find p0, we
walk along A0 from t0 towards Π(c0, c2), and along A2

from t2 towards Π(c0, c2). By always advancing on the
arc that is furthest away from Π(c0, c2), we eventually
find p0 in O(n) time.

The cost of finding p0, p1, p2 is dominated by the cost
of finding D∗. We conclude with the following:

Theorem 10 Given a set D of m pairwise-intersecting
disks in a simple polygon P on n vertices and nr reflex
vertices, we can compute the at most 3 points that pierce
D in O(n+m log nr) time.

5 Conclusion

Theorem 10 settles the question of how many points are
sufficient to pierce a set of pairwise-intersecting unit
disks in the geodesic setting. It would be interesting
to prove that the runtime of our algorithm is optimal.
We leave as an open question to determine whether 4
or 5 points are necessary to pierce pairwise-intersecting
geodesic disks of arbitrary radius. When the radii are
arbitrary, 4 points are sometimes necessary and always
sufficient in the Euclidean setting. In the geodesic set-
ting, the best known lower bound is 4 (from the lower
bound example in the Euclidean setting) and the upper
bound is 5 piercing points [1]. It would be interesting
to close this gap.
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